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This online material contains six appendices to the paper. Appendix A proves proposition 1 in

the paper. Appendix B derives the stationary equilibrium. Appendix C studies the bubbly steady

state. Appendix D provides the log-linearized equilibrium system around the bubbly steady state.

Appendix E presents a table of business cycle moments. Appendix F presents a robustness analysis.

A Appendix: Proof of Proposition 1 in the Paper:

We use a conjecture and verification strategy to find the decision rules at the firm level. We first

study the optimal investment problem by fixing the capacity utilization rate ujt . Using (14) and

(16) in the paper, we can write firm j’s dynamic programming problem as

vt(ε
j
t )K

j
t + bt,τ (εjt )− vLt(ε

j
t )L

j
t = max

Ijt ,L
j
t+1

ujtRtK
j
t − PtI

j
t − L

j
t +

Ljt+1

Rft
(A.1)

+Qt[(1− δjt )K
j
t + εjtI

j
t ] +Bt,τ −QLtLjt+1,

subject to the investment constraint:

0 ≤ PtIjt ≤ u
j
tRtK

j
t − L

j
t +

Ljt+1

Rft
+ ηtK

j
t . (A.2)

For εjt ≤ Pt/Qt, I
j
t = 0. Optimizing over Ljt+1 yields QLt = 1/Rft. For εjt+1 ≥ Pt/Qt, the

optimal investment level must reach the upper bound in the above investment constraint. We can

then immediately derive the optimal investment rule in (18) of the paper. In addition, the credit

constraint (17) in the paper must bind so that

1

Rft
Ljt+1 = QtξtK

j
t +Bt,τ . (A.3)

Substituting the optimal investment rule and QLt = 1/Rft into (A.1) yields:

vt(ε
j
t )K

j
t + bt,τ (εjt )− vLt(ε

j
t )L

j
t

= ujtRtK
j
t +Qt(1− δjt )K

j
t +Bt,τ − Ljt

+ max{Qtεjt/Pt − 1, 0} ×

(
ujtRtK

j
t + ηtK

j
t − L

j
t +

Ljt+1

Rft

)
. (A.4)

Since ujt is determined before observing εjt , it solves the following problem:

max
ujt

ujtRtK
j
t +Qt(1− δjt )K

j
t +Gtu

j
tRtK

j
t , (A.5)
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where Gt is defined by (20) in the paper. We then obtain the first order condition

Rt(1 +Gt) = Qtδ
′(ujt ). (A.6)

Since δjt = δ(ujt ) is convex, this condition is also sufficient for optimality. From this condition, we

can immediately deduce that optimal ujt does not depend on firm identity so that we can remove

the superscript j.

By defining δt ≡ δ(ut), (A.4) becomes

vt(ε
j
t )K

j
t + bt,τ (εjt )− vLt(ε

j
t )L

j
t

= utRtK
j
t +Qt(1− δt)Kj

t +Bt,τ − Ljt

+ max{Qtεjt/Pt − 1, 0} ×

(
utRtK

j
t + ηtK

j
t − L

j
t +

Ljt+1

Rft

)
,

where Ljt+1/Rft is given by (A.3). Matching coefficients yields:

vt(ε
j
t ) =

{
utRt +Qt(1− δt) + (Qtε

j
t/Pt − 1)(utRt + ηt + ξtQt) if εjt ≥ Pt

Qt

utRt +Qt(1− δt) otherwise
, (A.7)

bt,τ (εjt ) =

{ (
Qtε

j
t/Pt − 1

)
Bt,τ if εjt ≥ Pt

Qt

Bt,τ otherwise
, (A.8)

and

vLt(ε
j
t ) =

{
Qtε

j
t/Pt − 1 if εjt ≥ Pt

Qt

1 otherwise
.

Using equation (14) in the paper, we then obtain (21) and (22) and (23) in the paper. Q.E.D.

B Appendix: Stationary Equilibrium

We define the following transformed variables:

C̃t ≡
Ct
Γt
, Ĩt ≡

It
ZtΓt

, Ỹt ≡
Yt
Γt
, K̃t ≡

Kt

Γt−1Zt−1
,

P̃ st ≡ P st
Γt
, B̃a

t ≡
Ba
t

Γt
, X̃t ≡

Xt

ΓtZt
, W̃t ≡

Wt

Γt
,

Q̃t ≡ QtZt, P̃t = PtZt, R̃t = RtZt, Λ̃t ≡ ΛtΓt,

where Γt = Z
α

1−α
t At. The other variables are stationary and there is no need to scale them. To be

consistent with a balanced growth path, we also assume that K0t = Γt−1Zt−1K0, where K0 is a

constant.
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The six shocks in the model are given by

1. The permanent TFP shock,

Apt = Apt−1λat, lnλat = (1− ρa) ln λ̄a + ρa lnλa,t−1 + εat. (B.1)

2. The transitory TFP shock,

lnAmt = ρam lnAmt−1 + εam,t. (B.2)

3. The IST shock,

Zt = Zt−1λzt, lnλzt = (1− ρz) ln λ̄z + ρz lnλz,t−1 + εzt. (B.3)

4. The sentiment shock,

ln θt = (1− ρθ) θ̄ + ρθ ln θt−1 + εθ,t. (B.4)

5. The labor shock,

lnψt =
(
1− ρψ

)
ln ψ̄ + ρψ lnψt−1 + εψt. (B.5)

6. The financial shock,

ln ζt =
(
1− ρζ

)
ln ζ̄ + ρζ ln ζt−1 + εζt.

Here, all innovations are mutually independent and are independently and identically dis-

tributed normal random variables.

Denote by gγt ≡ Γt/Γt−1 the growth rate of Γt. Denote by gγ the nonstochastic steady-state of

gγt, satisfying

ln gγ ≡
α

1− α
ln λ̄z + ln λ̄a. (B.6)

On the nonstochastic balanced growth path, investment and capital grow at the rate of λ̄I ≡ gγ λ̄z;
consumption, output, wages, and bubbles grow at the rate of gγ ; and the rental rate of capital,

Tobin’s marginal Q, and the relative price of investment goods decrease at the rate λ̄z.

After the transformation described in Section 3, we can derive a system of 15 equations for 15

transformed variables: {C̃t, Ĩt, Ỹt, Nt, K̃t, ut, Q̃t, X̃t, P̃t, W̃t, R̃t, mt, B̃
a
t , Rft, Λ̃t}.

1. Resource constraint:

C̃t +

1 +
Ω

2

(
Ĩt

Ĩt−1
gztgγt − λ̄I

)2
 Ĩt = Ỹt, (B.7)

where gzt = Zt/Zt−1.
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2. Aggregate Investment:

Ĩt =
(
αỸt + ζtQ̃tX̃t + B̃a

t

) 1− Φ (ε∗t )

P̃t
, (B.8)

where ε∗t = P̃t/Q̃t.

3. Aggregate output:

Ỹt =
(
utX̃t

)α
N1−α
t . (B.9)

4. Labor supply:

(1− α)
Ỹt
Nt

Λ̃t = ψt. (B.10)

5. The law of motion for capital:

K̃t+1 = (1− δt)X̃t + Ĩt
Σ (ε∗t )

1− Φ (ε∗t )
, (B.11)

where

Σ (ε∗t ) ≡
∫
ε>ε∗t

εdΦ (ε) .

6. Capacity utilization:

α
Ỹt

utX̃t

(1 +Gt) = Q̃tδ
′(ut), (B.12)

where

Gt =

∫
ε>ε∗t

(ε/ε∗t − 1) dΦ (ε) =
Σ (ε∗t )

ε∗t
+ Φ (ε∗t )− 1.

7. Marginal Q:

Q̃t = β(1− δe)Et
Λ̃t+1

Λ̃t

Q̃t+1

gzt+1gγt+1

[
ut+1δ

′(ut+1) + (1− δt+1) + ζt+1Gt+1

]
. (B.13)

8. Effective capital stock used in production:

X̃t =
1− δe
gztgγt

K̃t + δeK0. (B.14)

9. Euler equation for investment goods producers:

P̃t = 1 +
Ω

2

(
Ĩt

Ĩt−1
gztgγt − λ̄I

)2

+ Ω

(
Ĩt

Ĩt−1
gztgγt − λ̄I

)
Ĩt

Ĩt−1
gztgγt

−βEt
Λ̃t+1

Λ̃t
Ω

(
Ĩt+1

Ĩt
gzt+1gγt+1 − λ̄I

)(
Ĩt+1

Ĩt

)2

gzt+1gγt+1. (B.15)
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10. The wage rate:

W̃t = (1− α)
Ỹt
Nt
. (B.16)

11. The rental rate of capital:

R̃t =
αỸt

utX̃t

. (B.17)

12. Evolution of the number of bubbly firms:

mt = mt−1(1− δe)θt−1 + δeω. (B.18)

13. Evolution of the total value of the bubble:

B̃a
t = βEt

Λ̃t+1

Λ̃t
B̃a
t+1 (1 +Gt+1) (1− δe)θt

mt

mt+1
. (B.19)

14. The risk-free rate:
1

Rft
= βEt

Λ̃t+1

Λ̃t

1

gγt+1
(1 +Gt+1) (1− δe). (B.20)

15. Marginal utility for consumption:

Λ̃t =
1

C̃t − hC̃t−1/gγt
− βEt

h

C̃t+1gγt+1 − hC̃t
. (B.21)

C Appendix: Steady State

The transformed system presented in Appendix B has a nonstochastic steady state. We eliminate

W̃t and R̃t and then obtain a system of 15 equations for 15 steady-state values: {C̃, Ĩ, Ỹ , N, K̃,
u, Q̃, X̃, P̃ , W̃ , R̃, m, B̃a, Rf , Λ̃}, where we have removed time subscripts. We assume that the

function δ (·) is such that the steady-state capacity utilization rate is equal to 1. In addition, we

set Q̃ = 1 which pins down G.

1. Resource constraint:

C̃ + Ĩ = Ỹ , (C.1)

where we have used the fact that λ̄I = λ̄zgγ .

2. Aggregate investment:

Ĩ =
(
αỸ + ζ̄Q̃X̃ + B̃a

) 1− Φ (ε∗)

P̃
, (C.2)

where 1− Φ (ε∗) =
∫
ε>ε∗ dΦ (ε) , and ε∗ = P̃ /Q̃.

3. Aggregate output:

Ỹ = X̃αN1−α. (C.3)
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4. Labor supply:

(1− α)
Ỹ

N
Λ̃ = ψ̄. (C.4)

5. End-of-period capital stock:

K̃ = (1− δ (1))X̃ + Ĩ
Σ (ε∗)

1− Φ (ε∗)
, (C.5)

where

Σ (ε∗) ≡
∫
ε>ε∗

εdΦ (ε) .

6. Capacity utilization:

α
Ỹ

X̃
(1 +G) = Q̃δ′(1), (C.6)

where

G =

∫
ε>ε∗

(ε/ε∗ − 1) dΦ (ε) =
Σ (ε∗)

ε∗
+ Φ (ε∗)− 1.

7. Marginal Q:

1 = β(1− δe)
1

λ̄zgγ

[
δ′(1) + 1− δ (1) + ζ̄G

]
. (C.7)

8. Effective capital stock used in production:

X̃ =
1− δe
λ̄zgγ

K̃ + δeK0. (C.8)

9. Euler equation for investment goods producers:

P̃ = 1. (C.9)

10. The wage rate:

W̃ = (1− α)
Ỹ

N
. (C.10)

11. The rental rate of capital:

R̃ =
αỸ

X̃
. (C.11)

12. Evolution of the number of bubbly firms:

m = m(1− δe)θ̄ + δeω. (C.12)

13. Evolution of the total value of the bubble:

B̃a = βB̃a (1 +G) (1− δe)θ̄. (C.13)
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14. The risk-free rate:
1

Rf
= β

1

gγ
(1 +G) (1− δe). (C.14)

15. Marginal utility for consumption:

Λ̃ =
1

C̃ − hC̃/gγ
− βh

C̃gγ − hC̃
. (C.15)

For convenience, define ε∗t = Pt/Qt = P̃t/Q̃t as the investment threshold. We use a variable

without the time subscript to denote its steady-state value in the transformed stationary system.

The following proposition characterizes the bubbly steady state.1

Proposition: Suppose that ω > 0 and 0 < εmin < β(1 − δe)θ̄ < β. Then there exists a unique

steady-state threshold ε∗ ∈ (εmin, εmax) satisfying∫
ε>ε∗

(ε/ε∗ − 1) dΦ (ε) =
1

β(1− δe)θ̄
− 1. (C.16)

If the parameter values are such that

B̃a

Ỹ
=

[ϕk − (1− δ(1))]ϕx
1/
[
β(1− δe)θ̄

]
− Φ (ε∗)

− α− ζ̄ϕx > 0, (C.17)

where we define

ϕk ≡
(

1− δe
λ̄zgγ

+ δe
K0

K̃

)−1
, (C.18)

ϕx ≡
α

λ̄zgγ θ̄ − (1− δ (1))β(1− δe)θ̄ − ζ̄
[
1− β(1− δe)θ̄

] , (C.19)

then there exists a unique bubbly steady-state equilibrium with the bubble-output ratio given in

(C.17). The steady-state growth rate of the bubble is given by θ̄ = Rf/gγ , where Rf is the steady-

state interest rate. In addition, if

δ′(1) =
α

β(1− δe)θ̄
1

ϕx
, (C.20)

then the capacity utilization rate in this steady state is equal to 1.

Proof: In the steady state, equation (B.15) implies that P̃ = 1. Hence by definition we have

ε∗ = 1/Q̃. Then by the evolution equation (B.19) of the total bubble, we obtain the steady-state

relation:
1

β(1− δe)θ̄
− 1 = G =

∫
ε>ε∗

(ε/ε∗ − 1) dΦ (ε) . (C.21)

1The bubbleless steady state can be obtained by setting B̃a = 0 and m = ω = 0. In this case we can remove
equations (C.13) and (C.12).
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Define the expression on the right-hand side of the last equality as a function of ε∗, G (ε∗) . Then

we have G(εmin) = 1
εmin
− 1 and G(εmax) = 0. Given the assumption that εmin < β(1− δe)θ̄, there

is a unique solution ε∗ to equation (C.21) by the intermediate value theorem. In addition, by the

definition of G, we have

G =
Σ (ε∗)

ε∗
− [1− Φ (ε∗)] ,

where Σ (ε∗) =
∫
ε>ε∗ εdΦ (ε) . Thus Σ (ε∗) can be expressed as

Σ (ε∗) = [G+ 1− Φ (ε∗)] ε∗. (C.22)

Suppose that the steady-state capacity utilization rate is equal to 1. The steady-state version

of (B.13) gives (C.7) and the steady-state version of (B.12) gives (C.6). Using these two equations,

we can derive

α
Ỹ

X̃
=

Q̃

1 +G

[
gzgγ

β(1− δe)
− (1− δ(1))− ζ̄G

]
. (C.23)

Substituting equation (C.21) into the above equation yields:

Q̃X̃

Ỹ
= ϕx, (C.24)

where ϕx is given by (C.19). In order to support the steady-state u = 1, we use equation (B.12)

and (C.24) to show that condition (C.20) must be satisfied.

From (B.14), the end-of-period capital stock to the output ratio in the steady state satisfies

K̃

Ỹ
= ϕk

X̃

Ỹ
, (C.25)

where ϕk is given by (C.18). Then from equation (B.11), we can derive the steady-state relation:

Ĩ

Ỹ
=

1− Φ (ε∗)

Σ (ε∗)
[ϕk − (1− δ (1))]

X̃

Ỹ

=
1− Φ (ε∗)

[G+ 1− Φ (ε∗)]
[ϕk − (1− δ (1))]

Q̃X̃

Ỹ

=
[1− Φ (ε∗)] [ϕk − (1− δ (1))]ϕx

G+ 1− Φ (ε∗)
, (C.26)

where the second line follows from (C.22) and ε∗ = 1/Q̃ and the last line follows from (C.24). After

substituting (C.21) into the above equation, we solve for 1− Φ (ε∗) :

1− Φ (ε∗) =
1/
[
β(1− δe)θ̄

]
− 1(

Ĩ/Ỹ
)−1

[ϕk − (1− δ (1))]ϕx − 1
, (C.27)
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From (B.8), the steady-state total value of bubble to GDP ratio is given by

B̃a

Ỹ
=

Ĩ

Ỹ

1

1− Φ (ε∗)
− α− ζ̄ Q̃X̃

Ỹ
.

Substituting (C.21), (C.26) and (C.24) into the above equation yields (C.17). We require B̃a/Ỹ > 0.

By (23) and (34) in the paper, the growth rate of bubbles of the surviving firms in the steady state

is given by θ̄ = Rf/gγ . Q.E.D.

D Appendix: Log-linearized System

We eliminate equations for W̃t and R̃t. The log-linearized system for 13 variables {C̃t, Ĩt, Ỹt, Nt,

K̃t, ut, Q̃t, X̃t, P̃t, mt, B̃
a
t , Rft, Λ̃t} including two growth rates are summarized as follows:

1. Resource constraint:

Ŷt =
C̃

Ỹ
Ĉt +

Ĩ

Ỹ
Ît. (D.1)

2. Aggregate investment:

Ît =
α

α+ ζ̄ϕx + B̃a/Ỹ
Ŷt +

ζ̄ϕx
α+ ζ̄ϕx + B̃a/Y

(
ζ̂t + Q̂t + X̂t

)
(D.2)

+
B̃a/Ỹ

α+ ζ̄ϕx + B̃a/Ỹ
B̂a
t − µε̂∗t − P̂t,

where

µ =
φ (ε∗) ε∗

1− Φ (ε∗)
, ε̂∗t = P̂t − Q̂t. (D.3)

3. Aggregate output:

Ỹt = α
(
ût + X̂t

)
+ (1− α) N̂t. (D.4)

4. Labor supply:

Λ̂t + Ŷt − N̂t = ψ̂t. (D.5)

5. End of period the capital stock:

K̂t+1 = −δ
′ (1)

ϕk
ût +

1− δ (1)

ϕk
X̂t +

(
1− 1− δ (1)

ϕk

)(
Ît −

µ

ϕG
ε̂∗t

)
, (D.6)

where

ϕG ≡ −
1− Φ (ε∗)

G
− 1. (D.7)
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6. Capacity utilization:

Ŷt − X̂t +
[
1− β(1− δe)θ̄

]
ϕGε̂

∗
t = Q̂t +

(
1 +

δ′′ (1)

δ′ (1)

)
ût. (D.8)

7. Marginal Q:

Q̂t = Et

(
Λ̂t+1 − Λ̂t

)
+ Et

(
Q̂t+1 − ĝzt+1 − ĝγt+1

)
+
β(1− δe)δ′ (1)

λ̄zgγ

δ′′ (1)

δ′ (1)
Etût+1

+
ζ̄β(1− δe)G

λ̄zgγ
Et

(
ζ̂t+1 + ϕGε̂

∗
t+1

)
. (D.9)

8. Effective capital stock

X̂t =
1− δe
λ̄zgγ

ϕk

(
K̂t − ĝzt − ĝγt

)
. (D.10)

9. Euler equation for investment goods producers:

P̂t = Et[(1 + β) Ωg2γ λ̄
2
z Ît + Ωλ̄

2
zg

2
γ (ĝγt + ĝzt)− Ωλ̄

2
zg

2
γ Ît−1 (D.11)

−βΩλ̄
2
zg

2
γ

(
Ît+1 + ĝzt+1 + ĝγt+1

)
].

10. Evolution of the number of bubbly firms:

m̂t = (1− δe) θ̄m̂t−1 + (1− δe) θ̄θ̂t−1. (D.12)

11. Evolution of the total value of the bubble:

B̂a
t = Et

(
Λ̂t+1 − Λ̂t + B̂a

t+1

)
+
[
1− β(1− δe)θ̄

]
ϕGEtε̂

∗
t+1 (D.13)

+
1− (1− δe)θ̄

(1− δe)θ̄
Etm̂t+1.

12. The risk-free rate

−R̂ft = Et

(
Λ̂t+1 − Λ̂t − ĝγt+1

)
+ [1− β(1− δe)Rf/gγ ]ϕGEtε̂

∗
t+1. (D.14)

13. Marginal utility for consumption:

Λ̂t =
gγ

gγ − βh

[
− gγ
gγ − h

Ĉt +
h

gγ − h

(
Ĉt−1 − ĝγt

)]
− βh

gγ − βh
Et

[
− gγ
gγ − h

(
Ĉt+1 + ĝγt+1

)
+

h

gγ − h
Ĉt

]
. (D.15)
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14. The growth rate of consumption goods

ĝγt =
α

1− α
λ̂zt +

(
λ̂at + Âmt − Âmt−1

)
. (D.16)

15. The growth rate of the investment goods price:

ĝzt = λ̂zt. (D.17)

In the above system G is determined by (C.13),

G =
1

β (1− δe) θ̄
− 1, (D.18)

(1− Φ (ε∗)) is given by (C.27), and δ′ (1) satisfies (C.20). The log-linearized shock processes are

listed below.

1. The permanent technology shock:

λ̂at = ρaλ̂at−1 + εat. (D.19)

2. The transitory technology shock:

Âmt = ρamÂ
m
t−1 + εam,t. (D.20)

3. The permanent investment-specific technology shock:

λ̂zt = ρzλ̂zt−1 + εzt. (D.21)

4. The labor supply shock:

ψ̂t = ρψψ̂t−1 + εψt. (D.22)

5. The financial shock:

ζ̂t = ρζ ζ̂t−1 + εζt. (D.23)

6. The sentiment shock:

θ̂t = ρθθ̂t−1 + εθt. (D.24)

E Appendix: Business Cycle Moments

To evaluate our model performance, we present in Table 1 the baseline model’s predictions regard-

ing standard deviations, correlations with output, and serial correlations of output, consumption,
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investment, hours, and stock prices. This table also presents results for four estimated comparison

models discussed in the paper. The model moments are computed using the simulated data from

the estimated model when all shocks are turned on. We take the posterior modes as parameter

values. Both simulated and actual data are in logs and HP filtered.

F Appendix: Robustness

F.1 Extended Model with Consumer Sentiment Index

Table 2 below reports the prior and posterior distributions of estimated parameters in the extended

model of Section 5 in the paper with the consumer sentiment index as one of the observation series.

The parameters {aj , bj}5j=1 in the table are coefficients in the equation for the sentiment shock

and in the observation equation of the consumer sentiment index. The variable σerr represents the

standard deviation of the measurement error.

F.2 Priors

In our baseline model of the paper, we choose 10% as the prior mean of σθ because we know that

the stock market volatility is very high. To see if our result is robust to a smaller prior mean of σθ,

we set the prior as Inv-Gamma with mean 0.01 and standard deviation infinite. We re-do Bayesian

estimation and report estimation results in Table 3. We find that these results are very similar to

those in the baseline estimation.

F.3 A Hybrid Model

Our baseline model has abstracted away from many other potentially important shocks such as

news shocks or uncertainty shocks. Thus, it is possible that the sentiment shock is not impor-

tant at all in explaining stock prices and real variables if other shocks are taken into account.

To examine this possibility, we follow the methodology of Ireland (2004) and combine the DSGE

model with the VAR model.2 We then estimate this hybrid model using Bayesian methods.3

Following Ireland (2004), we now shut down all the shocks in the baseline model except the senti-

ment shock, and introduce four measurement errors into the measurement equations for the data{
∆P sData

t ,∆CData
t ,∆IData

t , lnNData
}
. Specifically, let

2Ireland, Perter N., 2004, A method for Taking Models to the Data, Journal of Economic Dynamics and Control
28, 1205-1226.

3We thank Tao Zha for suggesting us to conduct this analysis.
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Table 1. Business Cycles Statistics

Y C I N SP P

Standard Deviations (%)
U.S. Data 1.70 0.93 4.19 1.79 10.82 1.11
Baseline Model 1.84 1.46 4.29 1.30 10.58 1.06
No Stock Price 1.15 0.95 3.04 1.11 1.32 1.22
No Sentiment 1.50 1.40 3.32 1.57 10.20 2.49
No Bubble 1.77 1.65 4.10 1.87 10.28 2.61
Extended 2.46 1.94 5.35 1.25 12.20 1.12

Standard Deviations Relative to Y
U.S. Data 1.00 0.55 2.47 1.05 6.36 0.65
Baseline Model 1.00 0.79 2.32 0.70 5.74 0.58
No Stock Price 1.00 0.83 2.63 0.96 1.15 1.06
No Sentiment 1.00 0.93 2.21 1.04 6.78 1.65
No Bubble 1.00 0.93 2.32 1.06 5.81 1.48
Extended 1.00 0.79 2.17 0.51 4.96 0.45

First Order Autocorrelations
U.S. Data 0.90 0.90 0.87 0.93 0.77 0.86
Baseline Model 0.89 0.93 0.79 0.78 0.76 0.85
No Stock Price 0.83 0.89 0.73 0.77 0.72 0.88
No Sentiment 0.91 0.91 0.83 0.74 0.72 0.81
No Bubble 0.94 0.94 0.87 0.78 0.72 0.75
Extended 0.91 0.94 0.84 0.84 0.76 0.86

Correlation with Y
U.S. Data 1.00 0.93 0.97 0.82 0.42 -0.13
Baseline Model 1.00 0.94 0.88 0.61 0.39 -0.07
No Stock Price 1.00 0.88 0.80 0.68 0.45 -0.08
No Sentiment 1.00 0.85 0.74 0.56 0.06 -0.14
No Bubble 1.00 0.90 0.71 0.52 0.08 0.07
Extended 1.00 0.96 0.91 0.64 0.50 -0.08

Note: The model moments are computed using the simulated data (20,000 periods) from the
estimated model at the posterior mode. All series are logged and detrended with the HP filter.
The columns labeled Y , C, I, N , SP , and P refer, respectively, to output, consumption, investment,
hours worked, the stock price, and the relative price of investment goods. “No Bubble” corresponds
to the model without bubbles. “No Sentiment” corresponds to the baseline model without sentiment
shocks. “No Stock Price” corresponds to the baseline model without using the stock price data in
estimation. “Extended” corresponds to the model in Section 5 of the paper.
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Table 2. Priors and posteriors of estimated parameters in the extended model

Prior Distribution Posterior Distribution
Parameter Distr. Mean St.Dev. Mode Mean 5% 95%

h Beta 0.33 0.24 0.57 0.56 0.50 0.63
Ω Gamma 2 2 0.03 0.04 0.01 0.06
δ′′/δ′ Gamma 1 1 15.66 15.57 11.64 19.43
ζ̄ Beta 0.3 0.1 0.25 0.25 0.21 0.29
µ Gamma 2 2 2.64 2.74 2.34 3.15

f1 Gamma 1 1 0.08 0.07 0.01 0.13
f2 Gamma 1 1 5.26 6.13 3.72 8.50
f3 Gamma 1 1 0.67 0.62 0.00 1.10
a1 Gamma 10 3 6.16 6.68 3.45 9.72
a2 Gamma 10 3 13.48 14.75 9.06 19.96
a3 Gamma 10 3 8.20 8.84 4.99 12.2
a4 Gamma 10 3 5.36 5.58 3.29 7.97
a5 Gamma 10 3 3.89 3.98 2.23 5.56
b1 Gamma 2 2 0.25 0.25 0.19 0.30
b2 Gamma 2 2 2.91 2.65 0.62 4.52
b3 Gamma 2 2 3.79 3.63 1.69 5.36
b4 Gamma 2 2 1.66 2.19 0.58 3.81
b5 Gamma 2 2 0.38 0.93 0.08 1.83

ρa Beta 0.5 0.2 0.68 0.67 0.52 0.80
ρam Beta 0.5 0.2 0.81 0.80 0.73 0.87
ρz Beta 0.5 0.2 0.40 0.38 0.26 0.51
ρθ Beta 0.5 0.2 0.96 0.95 0.94 0.96
ρψ Beta 0.5 0.2 0.96 0.96 0.95 0.97

ρζ Beta 0.5 0.2 0.97 0.96 0.95 0.98

σa (%) Inv-Gamma 1 Inf 0.74 0.75 0.59 0.91
σam (%) Inv-Gamma 1 Inf 0.66 0.67 0.56 0.77
σz (%) Inv-Gamma 1 Inf 0.59 0.60 0.53 0.67
σθ (%) Inv-Gamma 1 Inf 13.70 13.80 10.28 17.05
σψ (%) Inv-Gamma 1 Inf 0.80 0.81 0.71 0.90
σζ (%) Inv-Gamma 1 Inf 0.76 0.70 0.39 0.97
σerr (%) Inv-Gamma 1 Inf 8.63 8.76 7.87 9.71
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Table 3. Prior and posterior distributions of parameters

Prior Distribution Posterior Distribution
Parameter Distr. Mean St.Dev. Mode Mean 5% 95%

h Beta 0.33 0.24 0.54 0.54 0.49 0.61
Ω Gamma 2 2 0.03 0.03 0.01 0.06
δ′′/δ′ Gamma 1 1 11.44 11.92 8.33 15.49
ζ̄ Beta 0.3 0.1 0.29 0.30 0.22 0.36
µ Gamma 2 2 2.57 2.60 2.12 3.19

f1 Gamma 1 1 0.05 0.04 0.01 0.07
f2 Gamma 1 1 4.73 4.82 2.54 7.08
f3 Gamma 1 1 0.42 0.32 0.00 0.56

ρa Beta 0.5 0.2 0.96 0.97 0.94 0.99
ρam Beta 0.5 0.2 0.97 0.96 0.95 0.98
ρz Beta 0.5 0.2 0.36 0.34 0.22 0.46
ρθ Beta 0.5 0.2 0.93 0.92 0.90 0.95
ρψ Beta 0.5 0.2 0.99 0.98 0.96 0.99

ρζ Beta 0.5 0.2 0.88 0.87 0.81 0.94

σa (%) Inv-Gamma 0.01 Inf 0.23 0.23 0.18 0.29
σam (%) Inv-Gamma 0.01 Inf 1.03 1.04 0.93 1.16
σz (%) Inv-Gamma 0.01 Inf 0.59 0.60 0.54 0.67
σθ (%) Inv-Gamma 0.01 Inf 17.85 19.46 11.65 26.38
σψ (%) Inv-Gamma 0.01 Inf 0.81 0.82 0.72 0.93
σζ (%) Inv-Gamma 0.01 Inf 0.77 0.84 0.42 1.21
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ln (gγ)

ln
(
N̄
)

+−→ν t, (F.1)

where −→ν t is the vector contains four measurement errors, gγ is the gross growth rate of output,

and N̄ is the average hours in the data. Following Ireland (2004), we assume that the measurement

errors −→ν t follow a VAR(1) process:

−→ν t = A−→ν t−1 + Bε̂ν,t, (F.2)

where A is the coefficient matrix and B is assumed to be lower-triangular such that the innovations

in ε̂ν,t are orthogonal to each other.

The measurement errors in equation (F.2) can be considered as a combination of all omitted

structural shocks in our baseline model and allow for potential model misspecifications. We allow

the measurement errors to be flexible enough so that the data are not necessarily driven by the

sentiment shock. The idea is that, if the sentiment shock is not the driving force, then equations

(F.1) and (F.2) form a first-order Bayesian VAR system and the measurement errors should be

important in explaining fluctuations in the data of
{

∆P sData
t ,∆CData

t ,∆IData
t , lnNData

}
. On the

other hand, if the baseline model is correctly specified and the sentiment shock is the main source

of fluctuations, then the estimated measurement errors will be unimportant.

The variance decomposition shows that the sentiment shock remains the single most important

factor accounting for the stock price variation although its importance is somewhat reduced. It

explains about 82 percent of the variation in the stock prices. It still accounts for significant frac-

tions of fluctuations in investment, consumption and output, explaining about 26, 38, 35 percent,

respectively. As in the baseline model, the sentiment shock is not important in explaining the

fluctuation in hours. We also find that the estimates of the common parameters in the hybrid

model are very similar to those in the baseline model. The smoothed sentiment shock is still highly

correlated with the consumer sentiment data, the correlation is about 0.73. These results suggest

that the importance of the sentiment shock is robust to the model variation and specification of

different shocks.
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